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I A s e r i e s  of t e s t s  was performed on a fu l l - sca l e  model of t he  Atlas-Centaur 

vehic le  i n  a t e s t  chamber a t  the  Lewis Research Center t o  obtain information 

concerning the  dynamic behavior of the two stages during t h e  separat ion time 

in t e rva l .  A t  t h e  same time, data  were obtained r e l a t i n g  t o  t h e  r e l i a b i l i t y  

of t he  various systems involved i n  the s taging process. 

The t e s t  a r t i c l e  motions, i n  general, conformed t o  those predicted by 

dynamics equations, i n  that the  direct ion of movement observed w a s  t h e  same 

as t h a t  indicated by the dynamics equations, but  t he  magnitude of motion did 

not agree precisely.  A s  a r e s u l t  of t h i s  t e s t  s e r i e s ,  it w a s  concluded t h a t  

s a t i s f ac to ry  staging of t h e  A t l a s  from t h e  Centaur w i l l  occur, even i f  one of 

t h e  e ight  re t rorockets  does not f i r e .  

The linear-shaped charge, which cuts t h e  in t e r s t age  adapter during the  

separat ing sequence, successful ly  functioned i n  every t e s t .  The detonating 

t r a i n  serving t h e  shaped charge performed s a t i s f a c t o r i l y  with the  exception 

of marginal behavior noted i n  t h e  functioning of a "safe  and arm device" used 

t o  i n i t i a t e  t he  detonation. 

The retrorocket  system produced d i f f i c u l t i e s  i n  t h a t  a number of misf i res  

were encountered. The need f o r  a n  improved i g n i t e r  w a s  indicated and a new 

design was  obtained. 
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INTRODUCTION 

The Atlas-Centaur staging system consists e s sen t i a l ly  of two subsystems: 

a linear-shaped charge and a retrorocket system. 

severs t h e  in te rs tage  adapter a t  i t s  forward end t o  separate t h e  two vehicles 

The linear-shaped charge 

and t h e  retrorockets  decelerate t he  Atlas away from the  Centaur a t  approximately 

1/2 g. This approach was used t o  minimize uncertaint ies  a r i s ing  from i c e  

bonding a t  the separation plane, which i s  thermally close t o  t h e  cold l iqu id-  

hydrogen - liquid-oxygen (LH2/L02) Centaur propellant tank, and t o  minimize 

t h e  time in t e rva l  involved i n  the  staging process. 

An analysis  by the  General Dynamics/Convair Division indicated t h a t  (1) 

the re  would be only minor disturbances imparted t o  the  vehicles, and ( 2 )  there  

was enough safe ty  margin t o  avoid co l l i s ion  i n  t h e  event of a retrorocket  

f a i l u r e .  To ve r i fy  those predictions,  an experimental invest igat ion w a s  con- 

ducted with a fu l l - sca l e  model ( t o  eliminate sca l ing  e f f ec t s ) ,  using f l i g h t  

hardware where f eas ib l e  and operating i n  an evacuated chamber t o  duplicate 

rocket t h r u s t  and expansion e f f ec t s  and t o  eliminate the  damping ef fec ts  of 

t he  atmosphere. A converted wind tunnel a t  t he  L e w i s  Research Center was 

u t i l i z e d  fo r  t h i s  invest igat ion because of i ts  la rge  in t e rna l  volume that 

enabled it t o  contain fu l l - s ca l e  mockups and maintain a moderate vacuum 

throughout t he  rocket f i r i n g .  

While the  primary tes t  objective was the  evaluation of f l i g h t  dynamics, 

consideration was  a l s o  given t o  obtaining performance information on t h e  various 

systems associated with t h e  staging operation. The several  t e s t s  performed with 

(1) t h e  linear-shaped charge, ( 2 )  t he  shaped charge t r a i n ,  (3) t h e  retrorockets ,  

and (4)  t h e  f i r i n g  r e l ay  assembly were expected t o  shed considerable l i g h t  on 

t h e  r e l i a b i l i t y  of these systems. 
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APPARATUS 

Par t  of t he  ex is t ing  a l t i t u d e  wind  tunnel was converted t o  an a l t i t u d e  

chamber by the  removal of i t s  propeller, turning vanes, and heat-exchanger 

apparatus and by the eroection of bulkheads a t  i t s  southeast  corner and a t  

i t s  t e s t  bed section. A s  a r e s u l t ,  a chamber was  formed with a t e s t  sec t ion  

1 2 1  f e e t  (37m) long and 51 f e e t  (15.6m) i n  diameter with adjoining legs .  

volume of t he  e n t i r e  chamber, including t h e  t e s t  sec t ion  and t h e  adjacent 

legs ,  i s  of the  order of 600,000 cubic f e e t  (17,000 m3). 

l ihood of rec i rcu la t ing  rocket exhaust gas being d i rec ted  by one of t h e  chamber 

legs  and impinging on t h e  model, t h e  main chamber w a l l  was extended t o  separate  

t h e  t e s t  area from t h i s  leg .  

a ta rpaul in  ba r r i e r  on a cable frame across the  end of t h e  adjoining leg .  A 

plan view of the  converted chamber i s  shown i n  f igure  1. 

joined t o  the  laboratory cent ra l  exhaust system, which is  capable of providing 

a vacuum equivalent t o  t h a t  of approximately 100,000 f e e t  (3050Om) a l t i t u d e .  

The 

To reduce t h e  l i k e -  

This extension was  accomplished by constructing 

The chamber was 

A suspension system w a s  b u i l t  in to  t h e  roof of t he  t e s t  section. It 

included a dual r a i l  t r o l l e y  and ho i s t  from which t h e  A t l a s  was hung ( f i g .  2 ) .  

The t r o l l e y  from which the  Atlas was suspended was accelerated by a system of 

weights t h a t  were released a t  the same moment t h a t  t he  ret rorockets  were f i r e d .  

The weights were a r res ted  i n  t h e i r  t rave l  a t  a t i m e  corresponding t o  rocket 

burnout, and the  t r o l l e y  was  propelled through t h e  balance of i t s  t r a v e l  by 

a coast  weight s ized t o  overcome f r i c t i o n a l  drag. 

t i o n  caused by f i r i n g  d i f f e ren t  numbers of re t rorockets  were compensated for 

by varying the  weights propelling t h e  t ro l l ey .  

from a f ixed point,  as it was ant ic ipated t h a t  i t s  motion during t h e  time i n t e r -  

va l  of i n t e r e s t  would be qui te  small due t o  i t s  l a rge  weight of 38,000 pounds 

(17,200 kg) .  

Changes i n  Atlas accelera- 

The Centaur model was  suspended 
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The Atlas model simulated the  f l i g h t  booster 's  external  dimensions. 

The weight, which was approximately 10,000 pounds (4540 kg) ,  t h e  center of 

grav i ty  locat ion,  and the  moments of i n e r t i a  a t  the  time of separation were 

duplicated as closely as possible.  The Atlas framework consis tea  of a skele- 

ton framework of ribs and braces. The retrorocket  locat ions on t h e  Atlas 

duplicated t h e i r  f l i g h t  configuration posit ions,  and forms simulating A t l a s  

pods and vernier engine fa i r ings  were mounted t o  provide a rea l i s t ic  environ- 

ment f o r  the  ret rorocket  gases, as shown i n  f igure  3. An overa l l  view of t he  

A t l a s  model as  used i n  t h e  tests is shown i n  f igu re  4.  

The t e s t - a r t i c l e  in te rs tage  adapter was modified by replacing t h e  forward 

This expendable sec- end with an expendable 2-foot-long (0.6-m-long) sect ion.  

t i o n  permitted the  replacement of a small, eas i ly  handled u n i t  a f t e r  cu t t ing  

by the  shaped charge ra ther  than replacing the  whole adapter ( f i g .  5 ) .  

The Centaur vehicle was represented by a Centaur liquid-oxygen tank sup- 

ported by a s t a in l e s s - s t ee l  enclosure with weight-bearing outr igger  arms 

attached ( f ig .  6 ) .  The arms were used f o r  posit ioning and holding l ead  weights 

t h a t  were s ized  and placed so as t o  duplicate the  f l i g h t  vehicle  mass and 

moments of i n e r t i a  a t  the  time of staging. A f t  of the  tank a f ibe r  g lass  

"clearance envelope'' was affixed, as seen i n  f igu re  7, representing a boundary 

t h a t  encompassed a l l  a r t i c l e s  of  hardware (engines, helium and hydrogen 

peroxide b o t t l e s )  normally mounted on the Centaur's rear bulkhead. 

of t he  clearance envelope provided a v i s ib l e  reference t h a t  indicated the  

degree of allowable motion of t he  two vehicles r e l a t i v e  t o  one another. 

References marks on the  envelope provided an a i d  i n  determining the  magnitude 

of t h e  r e l a t i v e  motion observed. 

The use 
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A t  t h e  termination of t he  Atlas '  longitudinal t r ave l ,  it w a s  a r res ted  

by a v e r t i c a l  ne t  erected a t  t h e  end of t h e  chamber. The a r res t ing  hooks on 

t h e  A t l a s  framework t h a t  engaged the  net and prevented rebounding a r e  shown 

i n  f igu re  8. 

The Atlas was suspended by a gimbal and swivel j o i n t  a t  i t s  center of 

gravi ty ,  which allowed freedom of motion i n  pitch,  yaw, and roll. Lateral 

t r a n s l a t i o n  was l imited t o  t h e  s m a l l  amount allowed by pendulous motion through 

t h e  suspension cable. The foregoing freedoms of motion, plus t h e  freedom of 

longi tudinal  motion allowed by t h e  t ro l l ey  t rave l ,  provided f i v e  degrees of 

freedom f o r  t he  A t l a s  i n  these t e s t s .  

The Centaur was suspended by a yoke and swivel j o i n t  t h a t  allowed freedom 

of motion i n  p i t ch  and yaw. Freedom of longi tudinal  and l a t e r a l  t rans la t ions  

w a s  l imi ted  t o  that allowed by pendulous motion through t h e  Centaur suspension 

cable. Thus, t he  Centaur mockup was permitted four degrees of freedom through 

s m a l l .  motions. The suspension jo in t  i s  shown i n  f igure  6. 

Vehicle motions were recorded by high-speed motion-picture cameras and 

motion transducers which consisted of (1) f l ight- type r a t e  gyros, ( 2 )  accelero- 

meters, and (3)  extensometers. The locations of these devices a re  shown i n  

f igu re  9.  

Two model configurations were used i n  the  t e s t  s e r i e s .  The first con- 

f igura t ion  was s imilar  t o  t h e  second Centaur f l i g h t  (AC-2) .  

f igura t ion  simulated t h e  s i x t h  f l i g h t  (AC-6) and included a l i g h t e r  in te rs tage  

adapter, which caused changes i n  the  center of grav i ty  and t h e  moment of i n e r t i a .  

The se-cond con- 

Also, the  shaped-chmge detonator and i n i t i a t i o n  t r a i n  were simplified.  The 

AC-6 detonator, which replaced the  safe  and a r m  device, i s  shown i n  f igure  10, 

and a port ion of t he  detonation t ransfer  t r a i n  i s  shown i n  f igure  11. The 
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s t e e l  p la tes ,  which served as adapter guides during the  f i rs t  separation 

motions or, -4C-2, were replaced by f i b e r  g l a s s  Itbumperstt on AC-6. The r e t r o -  

rockets, with t h e  exception of t h e i r  ign i te rs ,  and t h e  shaped charge were 

unchanged. 

The mechanism used t o  sever t he  inters tage adapter w a s  a linear-shaped 

charge assembly made of cyclotrimethylene t r in i t ramine  (RCIX) contained i n  a 

lead sheath shaped and positioned t o  loca l ly  amplify the  explosive force i n  

a narrow band against  t he  adapter. The charge was ignited,  i n  t h e  case of 

t he  AC-2 configuration, by a detonator mounted in t eg ra l ly  with an e lec t ro-  

mechanical sa fe  and arm device. For the AC-6 configuration, instead of a safe 

and a r m  device, a detonator was used which employed a 1-ampere - 1 - w a t t  no-f i re  

i n i t i a t o r  t o  prevent inadvertent f i r ing .  

PROCEDURE 

Before each t e s t  t h e  two mockups were bolted together,  t he  in te rs tage  

adapter was  f i t t e d  with a linear-shaped charge, and e i the r  seven or eight  l i v e  

ret rorockets  were in s t a l l ed .  A number of tests were performed with seven 

rockets i n s t a l l ed ,  t he  eighth rocket being simulated by a mass dummy t o  repre- 

sen t  a f a i l e d  motor. The mass dumm;y was located i n  the  posi t ion expected t o  

c rea te  t h e  grea tes t  torque imbalance and t h e  most angular motion on the  pa r t  

of t h e  A t l a s .  "he Atlas supporting t r o l l e y  w a s  held i n  place by means of an 

explosive b o l t  and the  mated vehicles w e r e  r a i sed  t o  a posi t ion with t h e i r  

cen ter l ines  20 f e e t  (6.lm) above t h e  chamber f loor ,  5 f e e t  (1.5~1) below the  

chamber center,  t o  minimize t h e  effects  of rec i rcu la t ing  gas impingement. 

Accelerating weights were attached t o  t h e  t r o l l e y  system i n  amounts required 

t o  match t h e  ant ic ipated A t l a s  acceleration as it varied with t h e  use of e i the r  

seven or eight re t rorockets .  
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During a t e s t  run, t he  chamber was evacuated t o  a pressure equivalent t o  

approximately 100,000 f e e t  (30,500m) i n  a l t i t ude .  The recording oscillographs 

were then operated a t  high speed and the motion-picture cameras were turned on 

by command from the  t e s t  programmer so  tha t  a l l  equipment would be up t o  speed 

by the  time the  pyrotechnics were detonated. 

shaped charge and, a f t e r  a l/l0-second t i m e  delay ( a s  i s  i n  f l i g h t ) ,  t h e  

The programner then f i r e d  the  

t r o l l e y  r e l ease  b o l t  and t h e  retrorockets were f i r e d  simultaneously. 

c a l  rocket f i r i n g  sequence i s  shown i n  f igure 1 2 .  

A t y p i -  

Following each run, t h e  motion picture  and oscil lograph records were 

reduced manually and converted t o  curve form. Rocket pressure-time tabulat ions 

were made and, by the  use of a pressure-thrust  re la t ion ,  converted t o  th rus t  

against  t i m e .  

imparted t o  the  vehicle.  

Integrat ion of the  area under each curve gave the  t o t a l  impulse 

The accuracy of t he  pressure-thrust  r e l a t i o n  was 

v e r i f i e d  by simultaneously monitoring the chamber pressure and ac tua l  th rus t  

of a rocket as measured by a s t r a i n  gage on a mounting f ix tu re .  

Longitudinal extensometer and photographic data  were compared t o  give an 

indicat ion of the  A t l a s '  displacement against  time. The der ivat ive of t h e  

r e su l t i ng  p lo t  was averaged with the  accelerometer data  t o  determine the  A t l a s  

acceleration, and t h i s  information was compared with t h e  computed rocket impulse 

t o  determine the  magnitude of any thrust losses .  

A t l a s  r a t e  gyro data  were double integrated t o  obtain an indicat ion of 

Lateral  t r ans l a t ion  of t h e  Atlas angular motion of t h e  in te rs tage  adapter. 

model, including t h e  in te rs tage  adapter, was determined by photographic means, 

and thus t h e  t o t a l  l a t e r a l  motion of t he  adapter was obtained from both angular 

and t r ans l a t iona l  components. This information w a s  compared with photographic 
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data  t o  a r r i v e  a t  the  indicated motion of t h e  adapter forward end ( s t a t j o n  

413) during separation. 

with ana ly t i ca l  predictions.  

Observed A t l a s  behavior d - w i n g  separation was compared 

By means of extensometers and r a t e  gyros, it was s imi la r ly  possible t o  

determine the  Centaur's motion a t  the  same t i m e .  

Malfunctions of components v i t a l  t o  t h e  separation process were examined 

and s teps  were taken t o  increase the  r e l i a b i l i t y  of these components. 

RESULTS AND DISCUSSION 

Dynamics Studies 

The A t l a s  re tarding rockets a re  assymetrically located about the  vehicle 's  

p i t ch  axis t o  pa r t ly  compensate fo r  the center  of grav i ty  o f f s e t  from i t s  

center l ine  and t o  thus minimize the  moment imbalance about t h i s  axis during 

r e t r o  f i r i n g  ( f i g .  13). 

Inasmuch as the  loca t ion  of the  center of grav i ty  i s  a f fec ted  by the 

amount and locat ion of res idual  fue ls ,  it w i l l  vary from f l i g h t  t o  f l i gh t ;  an 

exact compensation cannot be a t ta ined  by means of rocket placement, but a best  

compromise is  effected.  The model configuration during t e s t  1, as noted i n  

t ab le  I, simulated the  estimated AC-2 center-of-gravity location, and the  sub- 

sequent model configuration s imula ted  t h e  AC-6 center-of-gravity locat ion.  

Differences i n  predicted motions between the  two can l a rge ly  be a t t r i bu ted  t o  

t h e  differences i n  the  center-of-gravity locat ions.  Some of t he  difference is  

due t o  changes i n  thevehic le  mass and moments of i n e r t i a  t h a t  r e s u l t  from a 

change i n  the  in te rs tage  adapter weight. 

It w a s  found, during the  rocket-thrust-against-pressure study on t h e  

s t a t i c  f i r i n g  stand, t h a t  the  retrorockets generated approximately 500 pound- 

seconds (2240n-sec.) of impulse, which w a s  t h e i r  nominal ra t ing .  The A t l a s  
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accelerat ion data, however, indicated a net impulse of approximately 400 

pound-seconds (17901.1-sec.) under t h e  same t e s t  conditions. Since there  

were no ex ter ior  res t ra in ing  forces, it is  concluded t h a t  t he  20-percent 

impulse l o s s  i s  the  r e s u l t  of A t l a s  skin f r i c t i o n .  

w a s  used i n  calculating motion predictions. ) 

* .  
(The ne t  thrust rea l ized  

The motions observed during tes ts  i n  which a l l  rockets were f i r e d  a r e  

tabulated and compared ( t ab le  I) with predictions based on equations developed 

i n  reference 1. 

i s  shown i n  the  appendix. 

predict ions,  with t h e  average terminal displacement being 2 . 5  inches (6.35 

cm) grea te r  than predicted along the  pi tch axis and 1.4 inches (3.56 cm) grea te r  

than predicted along the  yaw axis. 

A sample calculat ion of predicted motion using these equations 

The ac tua l  model motions consis tent ly  exceeded 

While the  observed motions exceed t h e  pre- 

dicted,  t h e  magnitude of t he  difference i s  not grea t .  

displacements may be calculated closely by the  use of the  equations noted i n  

reference 1. 

It appears t h a t  lateral  

The clearance between the  adapter and t h e  Centaur hardware i s  represented 

by t h e  "clearance envelope" ( f i g .  7 ) .  P ro f i l e  views of the  hardware-controlling 

boundary of t he  envelope a re  shown i n  f igures  14 and 15. 

t i o n  occurs a f t e r  108 inches (274 cm) of longi tudinal  motion of t he  A t l a s .  

The terminal separa- 

The 

minimum clearance remaining after t h e  l a r g e s t  p i t ch  displacement of t h e  i n t e r -  

s tage  adapter, resu l t ing  from e ight  rockets f i r i ng ,  was approximately 9.6 inches 

(24.4 cm), as seen i n  f igure 14. This clearance i s  considered t o  be su f f i c i en t ly  

l a rge  t o  absorb any reasonable anomalies t h a t  might occur i n  l a t e r  t e s t s  or i n  

f l i g h t  a 
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To observe the  model behavior with a s ing le  rocket failure, some of t he  

. t e s t s  were conducted w i t h  rocket 1 not operating, which analysis  showed t o  be 

t h e  worst case. 

and a r e  i n  c lose agreement. 

motion ind ica tes  t h a t  t h e  f a i lu re  of one rocket w i l l  not cause co l l i s ion .  

The predicted and observed r e s u l t s  are presented i n  t ab le  I1 
* -  Comparison of avai lable  clearance with the  observed 

Figures 14 and 15 a l s o  show t h e  adapter motions and t h e  clearances between 

the two s tages ,  t he  p i t ch  and yaw planes, f o r  both seven and eight  rockets 

f i r i n g .  The worst case observed is shown i n  both f igures .  

Systems Function Studies 

It w a s  found tha t ,  i n  t he  18 f i r ings  accomplished, t he  linear-shaped 

charges consis tent ly  produced a clean cut through t h e  metal a t  a l l  locat ions.  

A typ ica l  cut  sect ion i s  shown i n  figure 16. 

sented a problem i n  t h a t  occasionally the i r  mechanical arming mechanism f a i l e d  

t o  operate properly and prevented detonation. The device w a s  subsequently 

replaced by the  AC-6 detonator which did not incorporate the  moving element 

and circumvented the arming problem. Dif f icu l t ies  of another type occurred 

w i t h  t h e  new detonator i n  t h a t  it fractured i t s  mounting b o l t s  when f i r e d  and 

presented a po ten t i a l  shrapnel problem ( f i g .  10) .  

t o  correct  t h i s  problem. 

The sa fe  and a r m  devices pre- 

The mounting was redesigned 

During the s e r i e s  of t e s t s ,  t he  retrorockets occasionally f a i l e d  t o  i g n i t e  

even though t h e i r  i gn i t e r s  successfully f i r ed .  Invest igat ion revealed t h a t  t he  

ign i t e r s  were inadequate, and a new igni te r  w a s  subsequently used on A t l a s -  

Centaur f l i g h t s  ( r e f .  2 ) .  The new igni te r  w a s  used i n  the  balance of t he  t e s t  

s e r i e s  and produced no misf i res .  

Various anc i l l a ry  items of equipment a l s o  exhibited occasional performance 

malfunction. In  one instance, t he  e l e c t r i c a l  staging disconnect plug f a i l e d  t o  

c 
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respond t o  i t s  e j ec t  s igna l  p r io r  t o  separation; it parted i n  response t o  i t s  

mechanical backup lanyard pul l .  Subsequently, t he  t i m e  i n t e rva l  between the  

issuance of the  e l e c t r i c a l  s igna l  and vehicle staging w a s  lengthened t o  allow 

s u f f i c i e n t  time for  e jec t ion  of t h e  plug by i t s  primary means, the e l e c t r i c a l  

s ignal .  Also, t h e  lanyard attachment was modified t o  prevent cocking and t o  

r e l i eve  f r i c t i o n a l  s t r e s ses  during separation. 

Four p l a s t i c  helium chill-down ducts, serving the  engine ground c h i l l  

operation, were i n s t a l l e d  on t h e  t e s t  vehicle t o  evaluate t h e i r  disconnecting 

charac te r i s t ics .  It w a s  found t h a t  they consis tent ly  parted by tear ing a weak- 

l i n k  sec t ion  ra ther  than by s l id ing  apart  a t  a s l i p - j o i n t  connection located a t  

t h e  engine, which w a s  designed t o  be the primary disconnecting point. 

of one of t he  ducts with a pmted  weak l i n k  i s  shown i n  f igure  17 .  

A view 

This method 

of par t ing  w a s  not considered t o  be detrimental t o  f l i g h t  performance but, sub- 

sequently, the  primary j o i n t  was redesigned. 

I n  f l i g h t  t he  ret rorockets  a re  covered by aerodynamic f a i r ings  with blow- 

off  end caps. 

e jected a t  an angle from the  A t l a s  and prevent possible impingement on t h e  

The caps have tear-away tabs  designed t o  cause the  caps t o  be 

vehicle.  Several f a i r ings  were t e s t ed  for proper operation on some of t h e  

separation t e s t s .  It was found tha t ,  occasionally, t he  caps would not t e a r  

of f ,  as  seen i n  f igure  18. Caps remaining on the  f a i r i n g  could po ten t i a l ly  

i n t e r f e r e  with the  rocket exhaust; consequently, t h e  tear-away tabs  were 

redesigned. 

&Lor t o  staging, t h e  insulat ion panels were cut  from t h e i r  lower a t tach-  

ment point by a linear-shaped charge s imilar  t o  the  one on the  in te rs tage  adapter. 

The two charges a r e  located approximately 1 . 2 5  inches (3.18 cm) from one another, 

with the  poss ib i l i t y  t h a t  t he  f i r i n g  of t h e  panel charge could have deleter ious 
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e f fec t s  on the  staging charge. On two occasions the  two charges were munted, 

as i n  f l i g h t ,  and the  panel charge w a s  f i r e d  p r io r  t o  t h e  staging charge. No 

cross e f f ec t s  were observed. 

CONCLUSIONS 

The Atlas-Centaur staging system, in  i t s  f i n a l  f l i g h t  configuration, pro- 

vides f o r  s a t i s f ac to ry  separation of the s tages .  The retarding-rocket placement 

geometry allows f o r  a malf’unction of any one rocket without t h e  probabi l i ty  of 

a c o l l i s i o n  between the  stages.  

The tes t  s e r i e s  indicated t h a t  the linear-shaped charge as  used on t h e  

Atlas-Centaur vehicle w i l l  perform re l i ab ly  t o  e f f ec t  a mechanical stage 

separation. The retarding rockets, while or ig ina l ly  subject  t o  e r r a t i c  ign i -  

t ion ,  have been improved and now operate s a t i s f a c t o r i l y .  
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APPENDIX 

Sample Calculation of Predicted Motion 

The der iva t ion  of the  equation generated by General Dynamics/Convair f o r  

t he  pred ic t ion  of separation dynamics i s  presented i n  reference 1. 

as used i n  the  separat ion tests, i s  

The equation, 

and i s  designed f o r  general  applications.  

Symbols used i n  t h e  following analyses a r e  defined as follows: 

F average th rus t  charac te r i s t ic  f o r  single retrorocket ,  l b  (kg) 

moment of i n e r t i a  of booster vehicle  about t ransverse axes through 

center  of gravi ty ,  s lug - f t  ( k g - m  ) 

vector from center of gravi ty  of booster vehicle  t o  forward end of 

in te rs tage  adapter i n  x - ,  y- , z-reference frame, f t  (m)  

Iyy, I Z Z  

2 2 

2 

m mass of booster vehicle,  slug ( k g )  

n number of re t rorockets ,  nondimensional 

R dis tance from center l ine  of booster vehicle  t o  center  of re t rorocket  

e x i t  nozzle, f t  ( m )  

r e l a t i v e  axial  separat ion distance, f t  ( m )  

l a t e r a l  clearance used (z-component as seen by an observer whose 

reference frame i s  x, y, z ) ,  f t  (m) 

time t o  c l ea r  separation guides, sec 

t o t a l  time t o  c l ea r  Centaur engines, sec 

of fse t  of A t l a s  center  of gravi ty  from i t s  center l ine  along Z - a x i s ,  

Sx 

sZ 

to 

tX 
- 
Z 

ft ( m )  

cpi angle defining angular locat ion ith retrorocket ,  deg 



7 dummy variable used for time, sec 

A sample calculation for motion in one plane follows. A set of parameters 

applying to eight rockets firing are 

- 
mZR - 7 )  F ( 7 )  d7]} $ 2 (sin cpi + g Z ) s, = - - {- s, + [-nJo (tX 

- - -= {- s, + [-n FZ (2 to t, - to> 

i=l 

n 

IYY 

1 

YY i=l nI 

where 

F = 550 lb (250kg) 

S.y = 107 300 slug-ft' (145 500 kg-m2) 

2 = 45.5 f t  (13.9m) 

M = 303 slugs (440kg) 

n = 8 rockets 

R 

S, 

to 

t = 1.32 sec, time to clear Centaur 

= 5.25 ft (1.6 m) 

= -9 ft (-2.74 m) 

= 0.339 sec, time to clear guide bumpers 

X 

5 
i=l 

sin cp i = 0.678 

I 

Z = -0.9 ft (-0.27 m) 

Substituting these values gives 

s = -  303 (45.5) 5.25 g + ( Z 5 O )  (2;0.339.1.32 - o.33g2)]} 
Z 8 (107 300) 

(-Oo9) + 0.678 = 0.195 f t  (0.0595 m) ( 5.25 
S, = 2.34 = 2.3 in. (5.84 cm) (equivalent to 2.3 in. (5.84 cm) pitch down) 
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Computing for motion in the perpendicular plane yields 

Substituting 
2 2 

= 107 381 slug-ft 

Y = -0.342 ft (-0.104 m) 

(145,900 kg-m ) IZ z - 

cos cp = 0 i 

in the preceding S equation yields 
Y F  

- 

= 0.147 ft (0.0448 m) 

= 1.8 in. (4.57 cm) (equivalent to 1.8 inches (4.57 cm) yaw right) 
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Predicted. 
Test 

Observed. 

1 

2 

3 

4 

5 

a 

- Note: 

Test 

TABLE I. - ALL ROCKETS FIRED 
Pred-fct.ed motinx w e r e  computed by means of 

General Dynamics/Convair equation shown i n  t h e  appendix. 

P i tch  motion of s t a t i o n  413 
Predicted,  I Observed, 

Pi tch motion f s t a t i o n  413 
Predicted , 

6 

'7 

i n .  

2 . 0  

2.8 

2.8 

2 .8  

2 . 8  

i n .  (cmj in .  (cm) in .  

6 .0  (15 .2)  6 .2  (15.8)  --- 
6 . 0  (15 .2)  8.3 (21.1)  0.3 

Obsc 
i n .  

3.5 

3.9 

4.9 

3.2 

4.5 

ved, 
( cm) 

(8 .9)  

(9 .9)  

(12.5) 

(8.1) 

(11.4) 

T e s t  1 simulated the AC-2 f l ig 
of t h e  tests simulated the  AC-6 conf. 

i n .  (cmj 

2.2 

2 . 1  

2 . 1  

2 . 1  

2 . 1  

(5 .6 )  

(5.3) 

(5.3) 

(5.3) 

(5.3) 

in .  

4.0 

5.8 

4 . 5  

3.7 

5 .2  

- 

.t configuration; the 
uration. 

(10.2)  

(14.7)  

(11.4) 

(9 .4 )  

(13 .2)  

2alance 

TABLE 11. - ROCKET 1 NOT FIRED 
Predicted motions were computed by means of 

General Dynamics/Convair equation shown i n  t h e  appendix. 
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Figure  2. - A t l a s  suspension t r o l l e y  and r a i l s .  
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Figure 6. - Centaur model suspension jo in ts .  
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Figure 8. - Atlas model in arresting net. 
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~ i w - e  13. - ATLAS RE TRO- ROCK€ T PLACiCM€NT 
AS S E N  FROM RLAR 
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Figure 16. - Inters tage afiapter section cut by shaped charge. 
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Figure 17. - Helium chill-down disconnect parted at secondary j o i n t .  
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Figure 18. - Retrorocket f a i r i n g  with cap t h a t  f a i l e d  t o  e j e c t .  


